If it's not what You are looking for type in the equation solver your own equation and let us solve it.
52k^2+71k+24=0
a = 52; b = 71; c = +24;
Δ = b2-4ac
Δ = 712-4·52·24
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-7}{2*52}=\frac{-78}{104} =-3/4 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+7}{2*52}=\frac{-64}{104} =-8/13 $
| x+4x=238 | | 5(3-3x)=12 | | -12—7n+4n=n+8 | | (10*20)+(x*20)=0 | | -16=3n=-8-5n | | 8-1/2x=-12x-84 | | 4+6v+5+3=7+v | | .1x+.9=5 | | 2b+12/4=12 | | -12—4n=—6n+5n | | 5+w=-10 | | 16x100=48x | | (10*20)+(x*20)=30 | | 1666x100=48x | | 1+7n=—7+6n | | 3+2n=n+8 | | p-4=21 | | 1—6n=1-4n | | 3m+7m=-6m | | 6k=90 | | -40=20x^2+16x | | x^2+8x=-91 | | 6m-9=5m=+5 | | -6k+5k=-2k-3 | | 4b-2b=2b+4 | | 60=0.17+0.8x | | 1+4x=-5x+7x | | 0=-16t^2+48t+1450 | | 3/2u=16 | | 10x-12=8x+4 | | 289+16.50h=274.60+18.75h | | 58=x-47 |